

 Navigation

 	
 index

 	
 next |

 	ArduRPC 0.4.0 documentation

Welcome to ArduRPC

ArduRPC brings remote procedure calls(RPC) [http://en.wikipedia.org/wiki/Remote_procedure_call] to microcontrollers. It has been developed for Arduino [http://arduino.cc/] based projects but can also be used with other platforms. The protocol has been designed to be simple and flexible.

Users:

	Getting started
	Setup

	Usage

	Additional examples

	Handler
	Handler types

	Base types

	Buildin system handler
	Function overview

	Function details

	Additional handlers

Developers:

	Protocol
	Communication

	Data Types

	Return codes

	Example

	Communication
	Serial (Hex-Mode)

Additional information:

	License

	Changelog
	Version 0.4.0 (02.08.2014)

	Version 0.3.0 (25.02.2014)

	Version 0.2.0 (no public release)

	Version 0.1.0 (no public release)

Handlers

	Official handler repository [https://github.com/DinoTools/ArduRPC-handlers]
	Colorduino_GFX

	Adafruit NeoPixel

	...

Client libraries

Python:

	python-ardurpc [https://github.com/DinoTools/ArduRPC-python]

Application

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Getting started

Setup

First of all download the base library from the ArduRPC repository [https://github.com/DinoTools/ArduRPC] and extract the ArduRPC directory into your Arduino library path.

After that you can download additional handlers from the ArduRPC handler repository [https://github.com/DinoTools/ArduRPC-handlers] or from any other source. Copy the handler files to your Arduino library path. Make sure you have downloaded and installed all dependencies before using a handler.

Example: Adafruit_NeoPixel

	Download base library [https://github.com/DinoTools/ArduRPC]

	Extract the files

	Copy the ArduRPC directory to your Arduino library path

	Download the ArduRPC handler repository [https://github.com/DinoTools/ArduRPC-handlers]

	Extract the files

	Copy the ArduRPC_Adafruit_NeoPixel directory to your Arduino library path

	Download the Adafruit_NeoPixel library [https://github.com/adafruit/Adafruit_NeoPixel]

	Extract the files

	Copy the Adafruit_NeoPixel directory to you Arduino library path.

Usage

The easiest way to get started is to use one of the available examples and to modify only the required parts.

To use the Adafruit_NeoPixel library with ArduRPC follow the examples below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	#include <Adafruit_NeoPixel.h>
#include <ArduRPC.h>
#include <ArduRPC_Adafruit_NeoPixel.h>

Adafruit_NeoPixel strip = Adafruit_NeoPixel(14, 6, NEO_GRB + NEO_KHZ800);

ArduRPC rpc = ArduRPC(2, 0);
ArduRPC_Serial rpc_serial = ArduRPC_Serial(Serial, rpc);

ArduRPC_Adafruit_Neopixel Strip_Wrapper(rpc, "strip", strip);

void setup() {
 Serial.begin(9600);

 strip.begin();
 strip.show();
}

void loop() {
 rpc_serial.loop();
}

	Line 1:

	Include the Adafruit_NeoPixel library.

	Line 2:

	Include the ArduRPC base library.

	Line 3:

	Include the ArduRPC handler for the Adafruit_NeoPixel.

	Line 5:

	Initialize the NeoPixel strip.

	Line 7:

	Initialize the RPC manager with a limit of 2 handlers and 0 functions.

	Line 8:

	Initialize the RPC data processor for a serial communication.

	Line 10:

	Initialize the handler for the strip and name it ‘strip’.

	Line 13:

	Initialize the serial port and set baud to 9600.

	Line 15 and 16:

	Setup the strips.

	Line 18:

	Run the ArduRPC processing loop.

Additional examples

At least one example should be included with every library/handler.

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Handler

A handler provides one or more callable functions. Before the functions are accessible over the remote procedure call interface the handler must be connected to the system. A handler can be identified by the handler type.

Handler types

A handler type belongs always to a group with a base type. Functions defined in the base type must be available in all subtypes. This ensures that a client with support for a base type can at least access the basic functionality of a handler even if that specific subtype isn’t supported.

The development process of an API can be classified by three states:

	Experimental:

	Currently under development and the API might be changed in the next release.

	Beta:

	The API should be changed only if there is a good reason for this.

	Stable:

	The existing API must not be changed.

To register a new handler type feel free to open a new request by using the issue tracker [https://github.com/DinoTools/ardurpc/issues] on github.

	Start
	End
	Mask
	Name
	Status

	0x0100
	0x01FF
	8
	Base Pixel Strip
	Beta

	0x0180
	0x01FF
	9
	Extended Pixel Strip
	Experimental

	0x0200
	0x02FF
	8
	Base Matrix
	Beta

	0x0280
	0x02FF
	9
	Extended Matrix
	Beta

	0x0300
	0x03FF
	8
	Base Text-LCD
	Experimental

	0x0380
	0x03FF
	8
	Extended Text-LCD
	Experimental

	0x0400
	0x04FF
	8
	Base Sensor
	Experimental

	0x0401
	
	Temperature Sensor
	Experimental

	0x0402
	
	Humidity Sensor
	Experimental

	0x0403
	
	Temperature-Humidity Sensor
	Experimental

	0x0500
	0x05FF
	8
	Base Board
	Experimental

	0x0501
	16
	Arduino Board
	Experimental

	0xFF00
	0xFFFF
	8
	Custom handlers
	n/a

Base types

Base/Extended Pixel Strip

	ID
	Function
	Strip Type

	
	
	Base
	Extended

	0x01
	pixel_strip::getColorCount()
	X
	x

	0x02
	pixel_strip::getPixelCount()
	X
	x

	0x11
	pixel_strip::setPixelColor()
	X
	x

	0x12
	pixel_strip::setRangeColor()
	X
	x

	
uint8_t pixel_strip::getColorCount()

	Get the number of colors. Return value should be 1, 2 or 3.

	Returns:	Number of colors.

	
uint16_t pixel_strip::getPixelCount()

	Get the number of available pixels.

	Returns:	Number of pixels

	
void pixel_strip::setPixelColor(uint16_t n, uint8_t color1, uint8_t color2, uint8_t color3)

	Set the color of a pixel. All color values MUST be given and spare colors will be ignored by the device.

	Parameters:	
	n – The number of the LED. Range from 0 to pixel_count - 1

	color1 – First color. Red if color_count = 3.

	color2 – Second color. Green if color_count = 3.

	color3 – Third color. Blue if color_count = 3.

	
void pixel_strip::setRangeColor(uint16_t start, uint16_t end, uint8_t color1, uint8_t color2, uint8_t color3)

	Set the color of a range of pixels.

	Parameters:	
	start – The position to start. Range from 0 to pixel_count - 1

	end – The position to stop. Range from start to pixel_count - 1

	color1 – First color. Red if color_count = 3.

	color2 – Second color. Green if color_count = 3.

	color3 – Third color. Blue if color_count = 3.

Base/Extended Matrix

The Base Matrix handler is inspired by the Adafruit_GFX library and it is intended to be used with libraries based on Adafruit_GFX.
But it might also be possible to wrap any other library.

	ID
	Function
	Matrix Type

	
	
	Base
	Extended

	0x01
	matrix_gfx::getColorCount()
	X
	X

	0x02
	matrix_gfx::getWidth()
	X
	X

	0x03
	matrix_gfx::getHeight()
	X
	X

	0x11
	matrix_gfx::drawPixel()
	X
	X

	0x21
	matrix_gfx::drawLine()
	X
	X

	0x22
	matrix_gfx::drawFastVLine()
	
	X

	0x23
	matrix_gfx::drawFastHLine()
	
	X

	0x24
	matrix_gfx::drawRect()
	
	X

	0x25
	matrix_gfx::fillRect()
	
	X

	0x26
	matrix_gfx::fillScreen()
	X
	X

	0x27
	matrix_gfx::invertDisplay()
	
	X

	0x31
	matrix_gfx::drawCircle()
	
	X

	0x32
	matrix_gfx::fillCircle()
	
	X

	0x33
	matrix_gfx::drawTriangle()
	
	X

	0x34
	matrix_gfx::fillTriangle()
	
	X

	0x35
	matrix_gfx::drawRoundRect()
	
	X

	0x36
	matrix_gfx::fillRoundRect()
	
	X

	0x41
	matrix_gfx::drawChar()
	
	X

	0x42
	matrix_gfx::setCursor()
	
	X

	0x43
	matrix_gfx::setTextColor()
	
	X

	0x44
	matrix_gfx::setTextColor()
	
	X

	0x45
	matrix_gfx::setTextSize()
	
	X

	0x46
	matrix_gfx::setTextWrap()
	
	X

	0x47
	matrix_gfx::write()
	
	X

	0x51
	matrix_gfx::setRotation()
	
	X

	0x52
	matrix_gfx::swapBuffers()
	
	X

	0x53
	matrix_gfx::setAutoSwapBuffers()
	
	X

	0x61
	matrix_gfx::drawImage()
	
	X

	
uint8_t matrix_gfx::getColorCount()

	Get the number of colors. Return value should be 1, 2 or 3.

	Returns:	Number of colors.

	
uint16_t matrix_gfx::getWidth()

	Get width in pixels.

	Returns:	Number of pixels

	
uint16_t matrix_gfx::getHeight()

	Get height in pixels.

	Returns:	Number of pixels

	
void matrix_gfx::drawPixel(int16_t x, int16_t y, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a pixel.

	Parameters:	
	x – Pixel x position

	y – Pixel y position

	color1 – First color. Red if color_count = 3.

	color2 – Second color. Green if color_count = 3.

	color3 – Third color. Blue if color_count = 3.

	
void matrix_gfx::drawLine(int16_t x0, int16_t y0, int16_t x1, int16_t y1, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a line.

	
void matrix_gfx::drawFastVLine(int16_t x, int16_t y, int16_t h, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a vertical line.

	
void matrix_gfx::drawFastHLine(int16_t x, int16_t y, int16_t w, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a horizontal line.

	
void matrix_gfx::drawRect(int16_t x, int16_t y, int16_t w, int16_t h, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw the boarder of rectangle.

	
void matrix_gfx::fillRect(int16_t x, int16_t y, int16_t w, int16_t h, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a filled rectangle.

	
void matrix_gfx::fillScreen(uint8_t color1, uint8_t color2, uint8_t color3)

	Fill the screen with the given color.

	
void matrix_gfx::invertDisplay(boolean i)

	Invert the display.

	
void matrix_gfx::drawCircle(int16_t x0, int16_t y0, int16_t r, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw the border of a circle.

	
void matrix_gfx::fillCircle(int16_t x0, int16_t y0, int16_t r, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a filled circle.

	
void matrix_gfx::drawTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw the boarder of a triangle.

	
void matrix_gfx::fillTriangle(int16_t x0, int16_t y0, int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a filled triangle.

	
void matrix_gfx::drawRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h, int16_t radius, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw the boarder of a round rectangle.

	
void matrix_gfx::fillRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h, int16_t radius, uint8_t color1, uint8_t color2, uint8_t color3)

	Draw a filled round rectangle.

	
void matrix_gfx::drawChar(int16_t x, int16_t y, unsigned char c, uint8_t color1, uint8_t color2, uint8_t color3, uint16_t bg, uint8_t size)

	Draw a character.

	
void matrix_gfx::setCursor(int16_t x, int16_t y)

	Set the cursor position.

	
void matrix_gfx::setTextColor(uint8_t color1, uint8_t color2, uint8_t color3)

	Set the text color.

	
void matrix_gfx::setTextColor(uint8_t color1, uint8_t color2, uint8_t color3, uint8_t bg_red, uint8_t bg_green, uint8_t bg_blue)

	Set the text color.

	
void matrix_gfx::setTextSize(uint8_t s)

	Set the text size.

	
void matrix_gfx::setTextWrap(boolean w)

	Set the text wrap.

	
void matrix_gfx::setRotation(uint8_t r)

	Set the rotation.

	
uint8_t matrix_gfx::swapBuffers(uint8_t copy)

	

	Parameters copy:

		0 = False | 1 = True

Swap buffers and copy new front buffer into the back buffer.

	
uint8_t matrix_gfx::setAutoSwapBuffers(uint8_t auto_swap)

	

	Parameters auto_swap:

		0 = False | 1 = True

Set option to swap buffers after each command.

	
void matrix_gfx::drawImage(int16_t x, int16_t y, int16_t width, int16_t height, uint8_t color_encoding, uint8_t *image)

	

	Parameters:	
	x – x-position

	y – y-position

	width – Image width

	height – Image height

	color_encoding – The color encoding. For more information have a look at the list below.

	image – The image data

Color encoding:

	Mode 0:

	8-Bit encoding. From MSB to LSB:

	2-Bit - red

	3-Bit - green

	3-Bit - blue

	Mode 1:

	16-Bit encoding. From MSB to LSB:

	5-Bit - red

	6-Bit - green

	5-Bit - blue

	Mode 2:

	24-Bit encoding. From MSB to LSB:

	8-Bit - red

	8-Bit - green

	8-Bit - blue

Base/Extended Text-LCD

	ID
	Function
	Text-LCD Type

	
	
	Base
	Extended

	0x01
	text_lcd::getWidth()
	X
	X

	0x02
	text_lcd::getHeight()
	X
	X

	0x11
	text_lcd::clear()
	X
	X

	0x12
	text_lcd::home()
	X
	X

	0x13
	text_lcd::setCursor()
	x
	X

	0x21
	text_lcd::write()
	X
	X

	0x22
	text_lcd::print()
	X
	X

	
uint8_t text_lcd::getWidth()

	Get the width as number of characters.

	
uint8_t text_lcd::getHeight()

	Get the height as number of characters.

	
void text_lcd::clear()

	Clear the LCD screen and set the cursor position to the upper-left corner.

	
void text_lcd::home()

	Set the cursor position to the upper-left corner.

	
void text_lcd::setCursor(uint8_t col, uint8_t row)

	

	Parameters:	
	col – The column

	row – The row

Position the cursor.

	
void text_lcd::write(char c)

	

	Parameters c:	The character to display

Print a single character to the LCD.

	
void text_lcd::print(uint8_t num, char[] text)

	

	Parameters:	
	num – Number of characters

	text – The text to display

Print text to the LCD.

Base Sensor

Temperature/Humidity Sensor

The Temperature and the Humidity Sensors share the same API. Temperatures are always in Celsius.

	ID
	Function

	0x11
	sensor_temperature::getMinValue()

	0x12
	sensor_temperature::getMaxValue()

	0x13
	sensor_temperature::getAccuracy()

	0x14
	sensor_temperature::getValue()

	
float sensor_temperature::getMinValue()

	Get the value of the lowest possible temperature/humidity measured by the sensor.

	
float sensor_temperature::getMaxValue()

	Get the value of the highest possible temperature/humidity measured by the sensor.

	
float sensor_temperature::getAccuracy()

	Get the best accuracy of the measured values.

	
float sensor_temperature::getValue()

	Get the current temperature/humidity.

Temperature-Humidity Sensor

	ID
	Function

	0x11
	sensor_temp_humidity::getMinTempValue()

	0x12
	sensor_temp_humidity::getMaxTempValue()

	0x13
	sensor_temp_humidity::getTempAccuracy()

	0x14
	sensor_temp_humidity::getTemperature()

	0x21
	sensor_temp_humidity::getMinHumidityValue()

	0x22
	sensor_temp_humidity::getMaxHumidityValue()

	0x23
	sensor_temp_humidity::getHumidityAccuracy()

	0x24
	sensor_temp_humidity::getHumidity()

	
float sensor_temp_humidity::getMinTempValue()

	Get the value of the lowest possible temperature measured by the sensor.

	
float sensor_temp_humidity::getMaxTempValue()

	Get the value of the highest possible temperature measured by the sensor.

	
float sensor_temp_humidity::getTempAccuracy()

	Get the best accuracy of the measured temperature.

	
float sensor_temp_humidity::getTemperature()

	Get the current temperature.

	
float sensor_temp_humidity::getMinHumidityValue()

	Get the value of the lowest possible humidity measured by the sensor.

	
float sensor_temp_humidity::getMaxHumidityValue()

	Get the value of the highest possible humidity measured by the sensor.

	
float sensor_temp_humidity::getHumidityAccuracy()

	Get the best accuracy of the measured humidity.

	
float sensor_temp_humidity::getHumidity()

	Get the current humidity.

Base Board

At the moment only Arduino based boards are supported.

Arduino Board

A handler of this type is used to control Arduino based boards.

	ID
	Function

	0x11
	board_arduino::getAnalogInput()

	0x21
	board_arduino::getDigitalInput()

	0x22
	board_arduino::setDigitalOutput()

	0x31
	board_arduino::setPWMOutput()

	
uint16 board_arduino::getAnalogInput(uint8_t pin)

	Get the value of an analog input pin.

	Parameters pin:	Pin number

	
uint16 board_arduino::getDigitalInput(uint8_t pin)

	Get the value of an digital input pin.

	Parameters pin:	Pin number

	
uint16 board_arduino::setDigitalOutput(uint8_t pin, uint8_t value)

	Set the value of a digital output pin.

	Parameters:	
	pin – Pin number

	value – The value (0, 1)

	
uint16 board_arduino::setPWMOutput(uint8_t pin, uint8_t value)

	Set the value of a PWM output pin.

	Parameters:	
	pin – Pin number

	value – The PWM value (0-255)

Custom handlers

This range of IDs is reserved for custom handlers e.g. for testing or prototyping purposes.

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Buildin system handler

The system handler is available by default and is included in the base ArduRPC library.

Function overview

	ID
	Function

	0x01
	getProtocolVersion()

	0x02
	getLibraryVersion()

	0x03
	getMaxPacketSize()

	0x10
	getFunctionList()

	0x20
	getHandlerList()

	0x21
	getHandlerName()

Function details

	
uint8_t getProtocolVersion()

	Get the protocol version. At the moment this should be 0.

	
RPC_ARRAY getLibraryVersion()

	Return the library version as RPC_ARRAY with three elements of uint8 type.

	Major version

	Minor version

	Patch level

	
uint16_t getMaxPacketSize()

	Return the maximum packet size (header + data) in bytes.

	
RPC_VARRAY getFunctionList()

	Get a list of all functions. The result has 2 columns.

	The first column is a unsigned char and represents the internal ID.

	The second column is a unsigned char and represents the type of the function.

	
RPC_VARRAY getHandlerList()

	Get a list of all handlers. The result has 2 columns.

	The first column is a unsigned char and represents the internal ID of the handler.

	The second column is an unsigned short and represents the type of the handler.

	
RPC_CARRAY getHandlerName(uint8_thandler_id)

	Get the handler name by a given ID.

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Additional handlers

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Protocol

ArduRPC brings remote procedure calls to microcontrollers. The binary protocol has been designed to be simple and flexible. Basic and also complex data types are supported.

Communication

Request

	Name
	Type
	Comment

	Version
	uint8
	Protocol version (default: 0)

	Handler ID
	uint8
	ID of the handler

	Command ID
	uint8
	ID of the command to call

	Length
	uint8
	Length of data in bytes

	Data
	
	List of parameters

	Version:

	This is the version of the protocol. At the moment only version 0 is supported.

	Handler ID:

	The ID of the handler to use.

	Command ID:

	The ID of the command to call.

	Length:

	Length of the data in bytes.

	Data:

	A list of parameters. See Data Types for more information.

Response

	Name
	Type
	Comment

	Return code
	uint8
	The return code. See Return codes

	Data
	Mixed
	The result

	Data:

	The result data. Only one type of data is allowed.

Data Types

Basic data types

Basic data types have a fixed length like a signet Integer.

Data Types

	Identifier
	Data Type
	Size in Bytes

	0x00
	None
	0

	0x01
	Signed Char
	1

	0x02
	Unsigned Char
	1

	0x03
	Signet Short
	2

	0x04
	Unsigned Short
	2

	0x05
	Signed Long
	4

	0x06
	Unsigned Long
	4

	0x07
	Signed Long Long
	8

	0x08
	Unsigned Long Long
	8

	0x09
	Float [1]
	4

Data structure:

	Name
	Type
	Comment

	Identifier
	uint8
	The identifier. See Data types for more information.

	Data
	
	The data specified by the identifier.

Complex data types

At the moment the following data types are supported.

	Identifier
	Data Type

	0x10
	Simple array

	0x11
	String

	0x12
	Multicolumn array

	0x13
	Value array

Array:

	Name
	Type
	Comment

	Identifier
	uint8
	Set to 0x10. See data types for more information.

	Data Identifier
	uint8
	Basic data type of the elements.

	Length
	uint8
	Length of the string in bytes.

	Data
	
	The string.

String:

	Name
	Type
	Comment

	Identifier
	uint8
	Set to 0x11. See data types for more information.

	Length
	uint8
	Length of the string in bytes.

	Data
	
	The string.

Multi column array:

	Name
	Type
	Comment

	Identifier
	uint8
	Set to 0x12. See data types for more information.

	Columns
	uint8
	Number of columns.

	Column Identifier 1
	uint8
	The identifier for column 1

	Column Identifier m
	uint8
	The identifier for column m

	Length
	uint8
	Number of rows

	Row 1
	
	Data of row 1

	Row n
	
	Data of row n

Value array:

	Name
	Type
	Comment

	Identifier
	uint8
	Set to 0x13. See data types for more information.

	Length
	uint8
	Length of the array in bytes.

	Data
	
	List of identifiers and values

Return codes

	Code
	Comment

	0
	Success

	122
	Error in the package data

	123
	Error while parsing the header

	124
	Function not found

	125
	Handler not found

	126
	Command not found

	127
	Failure no reason given

Example

Basic data types

Request:

	Data
	Comment

	0x00
	Protocol version (default: 0)

	0x03
	ID of the handler.

	0x02
	ID of the command to call

	0x05
	Length of data in bytes

	0x10
	Value: 16 (Type: uint8)

	0x00
	Value: 1 (Type: uint16)

	0x01

Response:

	Data
	Comment

	0x00
	Success

	0x01
	Identifier for Unsigned Char

	0x10
	Value: 16

Footnotes

	[1]	Float values MUST use the IEEE 754 binary32 representation format.

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

Communication

Serial (Hex-Mode)

	Use a serial port like UART (Arduino: Serial or SoftwareSerial)

	Read/Write data line by line

	Every package/line must start with a colon (‘:’)

	Lines without a colon must be ignored

	Data is encoded as hex string

Example:

	Line 1:

	The Request

	Line 2:

	A comment or debug information

	Line 3:

	The response

	1
2
3

	:000302050110030001
This is a comment or debug info
:0110

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ArduRPC 0.4.0 documentation

License

The code is licensed under the terms of GNU Lesser General Public License [http://www.gnu.org/licenses/lgpl-3.0.en.html].

GNU LESSER GENERAL PUBLIC LICENSE
 Version 3, 29 June 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

 0. Additional Definitions.

 As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

 "The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

 An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

 A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

 The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

 The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

 1. Exception to Section 3 of the GNU GPL.

 You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

 2. Conveying Modified Versions.

 If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

 a) under this License, provided that you make a good faith effort to
 ensure that, in the event an Application does not supply the
 function or data, the facility still operates, and performs
 whatever part of its purpose remains meaningful, or

 b) under the GNU GPL, with none of the additional permissions of
 this License applicable to that copy.

 3. Object Code Incorporating Material from Library Header Files.

 The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

 a) Give prominent notice with each copy of the object code that the
 Library is used in it and that the Library and its use are
 covered by this License.

 b) Accompany the object code with a copy of the GNU GPL and this license
 document.

 4. Combined Works.

 You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

 a) Give prominent notice with each copy of the Combined Work that
 the Library is used in it and that the Library and its use are
 covered by this License.

 b) Accompany the Combined Work with a copy of the GNU GPL and this license
 document.

 c) For a Combined Work that displays copyright notices during
 execution, include the copyright notice for the Library among
 these notices, as well as a reference directing the user to the
 copies of the GNU GPL and this license document.

 d) Do one of the following:

 0) Convey the Minimal Corresponding Source under the terms of this
 License, and the Corresponding Application Code in a form
 suitable for, and under terms that permit, the user to
 recombine or relink the Application with a modified version of
 the Linked Version to produce a modified Combined Work, in the
 manner specified by section 6 of the GNU GPL for conveying
 Corresponding Source.

 1) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (a) uses at run time
 a copy of the Library already present on the user's computer
 system, and (b) will operate properly with a modified version
 of the Library that is interface-compatible with the Linked
 Version.

 e) Provide Installation Information, but only if you would otherwise
 be required to provide such information under section 6 of the
 GNU GPL, and only to the extent that such information is
 necessary to install and execute a modified version of the
 Combined Work produced by recombining or relinking the
 Application with a modified version of the Linked Version. (If
 you use option 4d0, the Installation Information must accompany
 the Minimal Corresponding Source and Corresponding Application
 Code. If you use option 4d1, you must provide the Installation
 Information in the manner specified by section 6 of the GNU GPL
 for conveying Corresponding Source.)

 5. Combined Libraries.

 You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

 a) Accompany the combined library with a copy of the same work based
 on the Library, uncombined with any other library facilities,
 conveyed under the terms of this License.

 b) Give prominent notice with the combined library that part of it
 is a work based on the Library, and explaining where to find the
 accompanying uncombined form of the same work.

 6. Revised Versions of the GNU Lesser General Public License.

 The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

 Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

 If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ArduRPC 0.4.0 documentation

Changelog

Version 0.4.0 (02.08.2014)

	Docs: New handler type for temperature and humidity sensors

	Protocol: Support float types

	Feature: Set max packet size to 256 byte

	Feature: New ArduRPC_Ethernet lib

	Feature: Handlers have to be a class

	Core: Rename ArduRPCSerial to ArduRPC_Serial

	Docs: New handler type for Arduino based boards

Version 0.3.0 (25.02.2014)

	Improvements to lower memory usage
	Shared buffers

	Feature: ArduRPCSerial class

	Feature: Macros to get version information

	Feature: Functions to write result data with type identifier

Version 0.2.0 (no public release)

	Protocol improvements

	Feature: Handler names

	Feature: Possibility to register functions

	Feature: None value

	Feature: Return codes

Version 0.1.0 (no public release)

	Initial version

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ArduRPC 0.4.0 documentation

Index

 B
 | G
 | M
 | P
 | S
 | T

B

 	

 	board_arduino::getAnalogInput (C++ function)

 	board_arduino::getDigitalInput (C++ function)

 	

 	board_arduino::setDigitalOutput (C++ function)

 	board_arduino::setPWMOutput (C++ function)

G

 	

 	getFunctionList (C function)

 	getHandlerList (C function)

 	getHandlerName (C function)

 	

 	getLibraryVersion (C function)

 	getMaxPacketSize (C function)

 	getProtocolVersion (C function)

M

 	

 	matrix_gfx::drawCircle (C++ function)

 	matrix_gfx::drawFastHLine (C++ function)

 	matrix_gfx::drawFastVLine (C++ function)

 	matrix_gfx::drawImage (C++ function)

 	matrix_gfx::drawLine (C++ function)

 	matrix_gfx::drawPixel (C++ function)

 	matrix_gfx::drawRect (C++ function)

 	matrix_gfx::drawRoundRect (C++ function)

 	matrix_gfx::drawTriangle (C++ function)

 	matrix_gfx::fillCircle (C++ function)

 	matrix_gfx::fillRect (C++ function)

 	matrix_gfx::fillRoundRect (C++ function)

 	matrix_gfx::fillScreen (C++ function)

 	

 	matrix_gfx::fillTriangle (C++ function)

 	matrix_gfx::getColorCount (C++ function)

 	matrix_gfx::getHeight (C++ function)

 	matrix_gfx::getWidth (C++ function)

 	matrix_gfx::invertDisplay (C++ function)

 	matrix_gfx::setAutoSwapBuffers (C++ function)

 	matrix_gfx::setCursor (C++ function)

 	matrix_gfx::setRotation (C++ function)

 	matrix_gfx::setTextColor (C++ function), [1]

 	matrix_gfx::setTextSize (C++ function)

 	matrix_gfx::setTextWrap (C++ function)

 	matrix_gfx::swapBuffers (C++ function)

P

 	

 	pixel_strip::getColorCount (C++ function)

 	pixel_strip::getPixelCount (C++ function)

 	

 	pixel_strip::setPixelColor (C++ function)

 	pixel_strip::setRangeColor (C++ function)

S

 	

 	sensor_temp_humidity::getHumidity (C++ function)

 	sensor_temp_humidity::getHumidityAccuracy (C++ function)

 	sensor_temp_humidity::getMaxHumidityValue (C++ function)

 	sensor_temp_humidity::getMaxTempValue (C++ function)

 	sensor_temp_humidity::getMinHumidityValue (C++ function)

 	sensor_temp_humidity::getMinTempValue (C++ function)

 	

 	sensor_temp_humidity::getTempAccuracy (C++ function)

 	sensor_temp_humidity::getTemperature (C++ function)

 	sensor_temperature::getAccuracy (C++ function)

 	sensor_temperature::getMaxValue (C++ function)

 	sensor_temperature::getMinValue (C++ function)

 	sensor_temperature::getValue (C++ function)

T

 	

 	text_lcd::clear (C++ function)

 	text_lcd::getHeight (C++ function)

 	text_lcd::getWidth (C++ function)

 	

 	text_lcd::home (C++ function)

 	text_lcd::setCursor (C++ function)

 	text_lcd::write (C++ function)

 Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

search.html

 Navigation

 		
 index

 		ArduRPC 0.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013-2014, DinoTools.org.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/file.png

_static/plus.png

