
ArduRPC Python Documentation
Release 0.3

DinoTools.org

August 02, 2014

Contents

1 ArduRPC 3
1.1 Requirements . 3
1.2 Installation . 3

2 Getting Started 5
2.1 Initialize the library . 5
2.2 Setup a connection . 5
2.3 Use the ArduRPC interface . 5

3 Examples 7
3.1 Basic Example . 7
3.2 Pixel Strip . 8

4 License 9

5 Changelog 13
5.1 0.3.0 - 02.08.2014 . 13
5.2 0.2.0 - 21.02.2014 . 13
5.3 0.1.0 - no public release . 13

6 API Documentation 15
6.1 ArduRPC . 15
6.2 Handler . 17

7 Indices and tables 21

Python Module Index 23

i

ii

ArduRPC Python Documentation, Release 0.3

ArduRPC is an extensible library to control microcontroller boards like Arduino using Python and the ArduRPC
protocol.

Contents 1

http://www.arduino.cc/
http://www.python.org/
http://.../

ArduRPC Python Documentation, Release 0.3

2 Contents

CHAPTER 1

ArduRPC

1.1 Requirements

• Python 3.x (maybe 2.x but untested)

• pySerial

1.2 Installation

1.2.1 From PyPI

ArduRPC can be install from PyPI as described below.

pip install ardurpc

1.2.2 From source

Download the archive from https://github.com/DinoTools/ArduRPC-python

python setup.py install

3

http://pyserial.sourceforge.net/
https://github.com/DinoTools/ArduRPC-python

ArduRPC Python Documentation, Release 0.3

4 Chapter 1. ArduRPC

CHAPTER 2

Getting Started

2.1 Initialize the library

Load all included handlers to enable auto detection:

>>> import ardurpc
>>> ardurpc.load_handlers()

2.2 Setup a connection

First off all setup a serial connection:

>>> import serial
>>> ser = serial.Serial(’/dev/ttyUSB0’, 9600, timeout=1)

Use the serial connection and initialize ArduRPC:

>>> rpc = ardurpc.ArduRPC(serial=ser)

2.3 Use the ArduRPC interface

Get the supported protocol version. This should be 0:

>>> rpc.getProtocolVersion()

Get the version of the ArduRPC library on the device. This should be a tuple with three elements:

>>> rpc.getLibraryVersion()

Get a list of all handler names available on the device:

>>> rpc.get_handler_names()

Get a handler named ‘neopixel’:

>>> handler = rpc.get_handler_by_name("neopixel")

Get the number of available pixels of the NeoPixel strip:

5

ArduRPC Python Documentation, Release 0.3

>>> handler.getPixelCount()

6 Chapter 2. Getting Started

CHAPTER 3

Examples

Additional examples can be found in the examples directory.

3.1 Basic Example

This is a very basic example to get started. It just connects to an Arduino running ArduRPC and extract some basic
information.

#!/usr/bin/env python
"""
Basic example.

Connects to an Arduino using the ArduRPC protocol and displays some information.

Change the connect() function to reflect your settings.
"""

import ardurpc
from ardurpc.connector import Serial, UDP

def connect():
Connect to the serial port
con = Serial("/dev/ttyACM0", 9600)

More examples:
con = Serial("/dev/ttyUSB0", 9600)
con = UDP(host="192.168.1.1", port=1234)

New instance
rpc = ardurpc.ArduRPC(connector=con)

print("Version(Protocol): {0}".format(rpc.getProtocolVersion()))
print(

"Version(Library): {0}".format(
".".join([str(i) for i in rpc.getLibraryVersion()])

)
)
print(

"Available handlers: {0}".format(
", ".join(rpc.get_handler_names())

)

7

ArduRPC Python Documentation, Release 0.3

)

return rpc

if __name__ == "__main__":
connect()

3.2 Pixel Strip

This examples uses the connect() function from the basic example.

#!/usr/bin/env python
"""
Control a pixel strip

This example uses the connect() function from the Basic example.
"""

from basic import connect

def run():
use the basic example
rpc = connect()

Get a handler named ’strip’
handler = rpc.get_handler_by_name("strip")
if handler is None:

print("A handler with the given name does not exist")

Get pixel count
pixel_count = handler.getPixelCount()
print("Strip has {0} pixels".format(pixel_count))

Set color to red
for i in range(0, pixel_count):

handler.setPixelColor(i, (255, 0, 0))

Set color to green
for i in range(0, pixel_count):

handler.setPixelColor(i, (0, 255, 0))

Set color to blue
for i in range(0, pixel_count):

handler.setPixelColor(i, (0, 0, 255))

if __name__ == "__main__":
run()

8 Chapter 3. Examples

CHAPTER 4

License

The code is licensed under the terms of GNU Lesser General Public License.

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

9

http://www.gnu.org/licenses/lgpl-3.0.en.html

ArduRPC Python Documentation, Release 0.3

1. Exception to Section 3 of the GNU GPL.

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

10 Chapter 4. License

ArduRPC Python Documentation, Release 0.3

0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user’s computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser

11

ArduRPC Python Documentation, Release 0.3

General Public License ever published by the Free Software Foundation.

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy’s public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

12 Chapter 4. License

CHAPTER 5

Changelog

5.1 0.3.0 - 02.08.2014

• Support Text-LCD handlers

• Support handler for Arduino based boards

• Handle new return codes (ArduRPC 0.4)

• New Bluetooth connector

• New UDP connector

5.2 0.2.0 - 21.02.2014

• Public release

• Support ArduRPC 0.3

• Add examples

5.3 0.1.0 - no public release

• Initial version

13

ArduRPC Python Documentation, Release 0.3

14 Chapter 5. Changelog

CHAPTER 6

API Documentation

6.1 ArduRPC

class ardurpc.ArduRPC(handlers=None, **kwargs)
Functions with camel-case names are directly mapped to a function on the device. Functions without camel-case
names are not mapped. The second function type should be preferred.

getHandlerList()
Get a handler list.

Function ‘get_handlers()’ should be preferred.

Returns Raw value returned by the device

getHandlerName(handler_id)
Get a handler name by its ID.

Parameters handler_id (Integer) – The ID of the handler

Returns The name of the handler

Return type String

getLibraryVersion()
Get the version of the ArduRPC library running on the device.

Returns Raw value returned by the device

getMaxPacketSize()
Get the max packet size supported by the device.

Returns Raw value returned by the device

getProtocolVersion()
Get supported protocol version.

Returns Value returned by the device

get_handler(handler_id)
Return a instance of the handler.

Parameters handler_id (Integer) – The ID of the handler

Returns Class instance or None

Return type Instance

15

ArduRPC Python Documentation, Release 0.3

get_handler_by_name(name)
Return a instance of the handler.

Parameters name (String) – The name of the handler

Returns Class instance or None

Return type Instance

get_handler_cache()
Get a list of all cached handlers.

Returns Dict: Key = Name, Value = Instance

Return type Dict

get_handler_names()
Return a list of handler names present on the device.

Returns List of names

Return type List

get_handlers()
Get a list of all available handlers.

Returns Dict: Key = Name, Value = Instance

Return type Dict

get_version()
Get the version of the ArduRPC library running on the device.

Returns A Dict with major, minor and patch level

Return type Dict

ardurpc.load_handlers()
Load build-in handlers.

ardurpc.register(handler_type, handler, mask=16)
Register a new handler.

Parameters

• handler_type (Integer) – The ID of the handler type

• handler (Class) – The handler class (Not an instance)

• mask (Integer) – The mask to group handlers

ArduRPC exceptions.

• Failure

– FunctionNotFound

– HandlerNotFound

– CommandNotFound

• Timeout

exception ardurpc.exception.ArduRPCException(value=’‘)
Base ArduRPC Exception.

__weakref__
list of weak references to the object (if defined)

16 Chapter 6. API Documentation

ArduRPC Python Documentation, Release 0.3

exception ardurpc.exception.CommandNotFound(value=’‘)
The command is not available on the microcontroller.

exception ardurpc.exception.Failure(value=’‘)
Something went wrong while executing a command.

But no reason was given.

exception ardurpc.exception.FunctionNotFound(value=’‘)
The function is not available on the microcontroller.

exception ardurpc.exception.HandlerNotFound(value=’‘)
The handler is not available on the microcontroller.

exception ardurpc.exception.InvalidHeader(value=’‘)
The header was malformed

exception ardurpc.exception.InvalidRequest(value=’‘)
The request was malformed

exception ardurpc.exception.Timeout(value=’‘)
A timeout occurred.

exception ardurpc.exception.UnknownReturnCode(value=’‘)
.

6.2 Handler

6.2.1 Text-LCD

6.2.2 Matrix

class ardurpc.handler.matrix.Base(**kwargs)
Handler for the Base Matrix type

drawLine(x0, y0, x1, y1, color)
Draw a line.

drawPixel(x, y, color)
Draw a pixel.

Parameters

• x (Integer) – X-Position

• y (Integer) – Y-Position

• color (Integer|Tuple) – The color

fillScreen(color)
Fill the screen with the given color.

getColorCount()
Get the color count.

Returns Number of colors

Return type Integer

getHeight()
Get the height in pixels

6.2. Handler 17

ArduRPC Python Documentation, Release 0.3

Returns Height

Return type Integer

getWidth()
Get the width in pixels.

Returns Width

Return type Integer

class ardurpc.handler.matrix.Extended(**kwargs)
Handler for the Extended Matrix type

drawChar(x, y, c, color, bg, size)

drawCircle(x, y, radius, color)

drawFastHLine(x, y, w, color)

drawFastVLine(x, y, h, color)

drawImage(x, y, image, encoding=2)

drawRect(x, y, w, h, color)

drawRoundRect(x, y, w, h, radius, color)

drawTriangle(x0, y0, x1, y1, x2, y2, color)

fillCircle(x, y, radius, color)

fillRect(x, y, w, h, color)

fillRoundRect(x, y, w, h, radius, color)

fillTriangle(x0, y0, x1, y1, x2, y2, color)

invertDisplay(i)

setAutoSwapBuffers(auto_swap=True)

setCursor(x, y)

setRotation(rotation)

setTextColor(color, bg=None)

setTextSize(size)

setTextWrap(wrap)

swapBuffers(copy=True)

write(s)

6.2.3 Strip

class ardurpc.handler.strip.Base(**kwargs)
Wrapper.

getColorCount()
Return the number of colors.

Returns Number of colors 1, 2 or 3

Return type Integer

18 Chapter 6. API Documentation

ArduRPC Python Documentation, Release 0.3

getPixelCount()
Return the number of pixels.

Returns Number of pixels

Return type Integer

setPixelColor(n, color)
Set the color of a pixel.

Parameters

• n (Integer) – The pixel index (0 - (16^2)-1)

• color (List|Integer) – The color

Returns command result

setRangeColor(start, end, color)
Set the color of a pixel.

Parameters

• start (Integer) – The pixel to start

• end (Integer) – The pixel to stop

• color (List|Integer) – The color

Returns command result

class ardurpc.handler.strip.Extended(**kwargs)
Wrapper.

show()
Transmit the current values to the LEDs.

class ardurpc.handler.Handler(connector=None, handler_id=None, name=None)
Handler base class.

__weakref__
list of weak references to the object (if defined)

_call(command_id, fmt=None, *data)
Execute a command on the microcontroller.

Parameters

• command_id (Integer) – The ID of the command

• fmt (String) – The format of the data

• data – Parameters for the command

Returns Returns the result

6.2. Handler 19

ArduRPC Python Documentation, Release 0.3

20 Chapter 6. API Documentation

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

ArduRPC Python Documentation, Release 0.3

22 Chapter 7. Indices and tables

Python Module Index

a
ardurpc, 15
ardurpc.exception, 16
ardurpc.handler, 19

23

	ArduRPC
	Requirements
	Installation

	Getting Started
	Initialize the library
	Setup a connection
	Use the ArduRPC interface

	Examples
	Basic Example
	Pixel Strip

	License
	Changelog
	0.3.0 - 02.08.2014
	0.2.0 - 21.02.2014
	0.1.0 - no public release

	API Documentation
	ArduRPC
	Handler

	Indices and tables
	Python Module Index

